
Network Router Performance Testing How-To

Ray Patrick Soucy
rps@maine.edu

Senior Cyber Security Engineer
University of Maine System

While dedicated network test equipment is ideal, it is often cost-prohibitive. Further, the misuse of available open
source tools, and misinterpretation of test data provided, often creates a situation where similar or even identical
systems are described to have vastly different performance characteristics.

This how-to provides an overview of performance testing for network routers and firewalls using commodity
hardware and available open source tools. The goal of this how-to is to provide network engineers and open source
developers with a standard testing methodology which can be used for reproducible and relevant results for
comparison of FOSS solutions against established commercial solutions.

Background

Note: It is important that this section is read and understood, as network performance testing can be
performed using different methodologies and presented using different interpretations.

When measuring network performance there are several measurements which represent different aspects of
performance. The most common difference is what layer of the OSI model is being tested (Layer-2, Layer-3, or
Layer-4-7).

The speed tests that most users are familiar with are typically a measurement of maximum data transfer. This is a
Layer-4-7 test, measuring the data transfer over time without taking protocol overhead into account, and using the
most efficient method for data transfer (large packets and, if using TCP, window scaling).

Similarly the throughput measurement reported by network devices can be different for the same flow(s) depending
on the type of device or interface. A Layer-2 device or interface, such as a network switch port, will report a
measurement of bits per second measured at Layer-2, while a network router or routed interface will report
measurement at Layer-3. For large packet lengths the difference can be minimal, but for smaller packets the
difference can be significant.

Test results for a network router or firewall are always a measurement of Layer-3 bits per second (bps) and will be
the focus of this how-to.

As each packet requires processing on a router or firewall, a higher packet per second (pps) rate is required for
smaller packets than larger ones to achieve the same throughput. There are several methods used for how to
represent performance for different packet lengths.

Because normal network traffic is comprised of a mix of packets of various length, there have been efforts over time
to represent this as an average for what is considered typical performance. The most common formula is known as
IMIX, or Internet mix, an example of which can be seen in the table below.

mailto:rps@maine.edu

Commonly used reference for Simple IMIX

Packet Len Count Distribution (Packet) Bytes Distribution (Byte)

40 7 58.3% 280 7%

576 4 33.3% 2304 56%

1500 1 8.3% 1500 37%

This results in an average packet length of 340-byte, but does not take into account the widespread adoption of TCP
window scaling and explosion of video content on modern network traffic (which significantly reduces small packet
count).

It should be noted that while the above reference is the most commonly cited, there is no agreed upon standard for
IMIX. As one example, Cisco made use of average 410-byte packets for IMIX testing in 2010.

Today, a standard mix of traffic can be observed to have an average packet length of up to 740-bytes for normal
usage, which is much different from the model described above.

More useful test results provide a range of packet lengths to allow network engineers to make decisions based on
their individual use case. The most common measurements are for 64-byte, 128-byte, 256-byte, 512-byte,
1024-byte, and 1500-byte packets. Generating test results across a range of packet lengths will be the focus of this
how-to.

Unfortunately, it has become common for marketing materials from major network equipment vendors to simply list
test results of “Maximum” and “Typical”, often with the characteristics of the test methodology used for the latter not
being disclosed.

Another standard practice for representing network performance in marketing literature is to represent throughput as
the aggregate of all TX and RX taking place on the system, during the test. In effect, this counts each unidirectional
flow twice, once as ingress traffic on an interface, and again as egress traffic on a different interface, representing
what most would consider a 300 Mbps flow, as an 600 Mbps flow.

While the argument can be made that the goal is to measure the ability of the system to process packets, regardless
of the interfaces used, it can be misleading to those who do not understand the methodology used, and often is not
disclosed in marketing literature. As it is impossible to provide a comparison to vendor reported test results using
undisclosed and independent test methodologies, this how-to will focus on performance testing of unidirectional
flows through a router or firewall. These results can typically be doubled for comparison with industry marketing.
Similarly, this how-to presents 512-byte test results to represent “typical” and 9000-byte packets “maximum”.

Test Environment

The most accessible and reliable utility for performance testing is iperf3 on Linux, which will be the focus of this
how-to.

Our test environment will be comprised of two nodes, a sender (client) and a receiver (server) to generate traffic
through a router or firewall.

Hardware Selection

Hardware for the test environment must be carefully considered, and is the primary limiting factor.

A minimum of 8 x CPU cores is recommended for 10G testing. Ideally, the OS used for the test has all non-essential
processes terminated to avoid CPU and IO contention during the test.

As a reference the test environment used for this how-to is a pair of Supermicro 5018A-FTN4 servers (8-core 2.4
GHz) outfitted with Intel 82599ES -based PCIe x8 10GbE NICs. The OS used is Ubuntu Server 16.04 LTS (Linux
4.4), and the standard Ubuntu package for iperf3 is used (version 3.0.11-1). As will be shown below, this test
environment is not sufficient to perform 10 Gbps measurement at small packet lengths; this can be compensated
with the addition of a network switch and additional test units, but is beyond the scope of this how-to.

System Tuning

For tuning purposes, network interfaces are optionally set to use an MTU of 9000 for jumbo-frame testing, and
default buffers are increased by applying the following configuration to sysctl.conf:

net.core.rmem_max = 67108864
net.core.wmem_max = 67108864
net.ipv4.tcp_rmem = 4096 87380 33554432
net.ipv4.tcp_wmem = 4096 65536 33554432
net.ipv4.tcp_congestion_control = htcp
net.ipv4.tcp_mtu_probing = 1

These changes can be applied either using sysctrl -p or a reboot of the system.

Note that no kernel options are set for UDP. Our test environment uses TCP rather than UDP due to design choices
for UDP processing on Linux which limit throughput in favor of reducing latency for applications (this is not the case
for forwarding and filtering).

Baseline Test Results (Direct Node-to-Node)

Our test environment allows for testing using 1 Gbps interfaces or 10 Gbps interfaces. The results below show direct
node-to-node testing to establish the maximum performance possible to measure using the test environment.

It should be noted that networking performance on Linux depends largely on interrupt processing. At 100% CPU
core utilization, which is common for small packet lengths, test results will not be reliable. Counter-intuitively, the
introduction of latency (even measured in the 1-10 microsecond range) can have a positive impact on these results,
as the number of interrupts will be throttled, allowing for less CPU contention. For this reason, we will see better
results than the baseline test for any test which has saturated CPU.

Also note the absence of 64-byte testing. This is a limitation of iperf3 in the inability to generate 64-byte packets
when using TCP testing, which would require a 12-byte payload.

Because TCP is used for testing, only successful transfer will be shown in test results, with any policing or corrupted
data being excluded (and significantly impacting results). This is the desired behavior for this test scenario.

Baseline Node-to-Node for Gigabit Interfaces (1000Base-T)

Packet Len (L3) L3 Throughput L2 Throughput

128 778.1 863.2

256 873.4 921.2

512 933.8 959.4

1024 966.8 980.0

1500 980.0 989.1

9000 1000.7 1002.3

Baseline Node-to-Node for 10 Gigabit Interfaces (10Base-SR)
* near 100% CPU utilization for testing at this packet length

Packet Len (L3) L3 Throughput L2 Throughput

128 748.0 * 829.8 *

256 2389.3 * 2519.9 *

512 9276.9 9531.1

1024 9656.4 9788.4

1500 9765.4 9856.9

9000 9972.5 9988.4

Note that for smaller packet lengths the amount of overhead between Layer-2 and Layer-3 results becomes
increasingly significant, while almost negligible for large packets.

Running and Understanding iperf3 Results

Because the most common use of iperf3 is to measure the speed of data transfer the reported results will be the bps
of the data transfer (payload) rather than the Layer-3 transfer that is expected for discussing network router and
firewall performance. To compensate for this overhead, at L3 and L2, the multipliers in the table below are used to
include the calculated overhead for specific packet lengths.

Multipliers for conversion from iperf3 results to Layer-3 and Layer-2 measurements

Target Test (L3 length) L3 overhead multiplier L2 overhead multiplier

128 1.6842 1.8684

256 1.2549 1.3235

512 1.1130 1.1435

1024 1.0535 1.0679

1500 1.0359 1.0456

9000 1.0058 1.0074

Breakdown of packet overhead budget:

Ethernet Frame: 14 bytes
IP packet: 20 bytes
TCP packet: 20 bytes
TCP timestamps: 12 bytes (enabled by default on Linux)

Note that TCP timestamps are part of the TCP payload (MSS) but not part of the measured data rate. This
additional 12-byte overhead is often overlooked when interpreting iperf3 results.

Because iperf3 will default to take advantage of large packets and TCP window scaling, it must be executed with
specific options to force the desire packet length. This involves setting both the TCP MSS (option -M) and length
(option -l) attributes, with the length attribute representing the payload (minus TCP timestamps) and the MSS
option representing the payload and 12-bytes for the TCP timestamp option.

Configuration values for iperf3 TCP MSS (-M) and data length (-l)

Target Test Frame Size (L2) TCP MSS Data Len

128 142 88 76

256 270 216 204

512 526 472 460

1024 1038 984 972

1500 1514 1460 1448

9000 9014 8960 8948

To get accurate test results, iperf3 should also be called with options to set a duration for the test (option -t), a
reporting interval (option -i) matching the duration to avoid needless processing during the test, and the omit option
to discard the first n seconds of test results to account for process start time (option -O).

For a 30 second test, we use the values -t 31 -i 31 -O 1. (31 seconds minus 1).

A minimum of 30 seconds is recommended for test duration.

As an example the following command string would be used to call iperf3 for a 128-byte test:

iperf3 -f m -c $HOST -p 5201 -t 31 -i 31 -O 1 -M 88 -l 76 -P 8 -T 0 -A 0

Additional options:

-f m Format (mbit)
-c $HOST Server IP
-p 5201 Port Number
-P 8 Number of parallel client streams to run (single threaded)
-T 0 Report prefix (title)
-A 0 CPU affinity

In testing, using 8 parallel streams (part of the same loop of execution) produced the best results. Because iperf3 is
single threaded, a separate instance of the client and server should be launched for each CPU core, using the -A
option to set CPU affinity, and specifying a unique port for each process.

Note: Complete shell scripts to launch multiple client and server processes, and apply the appropriate
multiplier to results, are included at the end of this how-to.

The options for the corresponding server process should be as follows:

iperf3 -p 5201 -s -D -A 0

The reported result SUM in Mbps represents the data transfer for the payload and must be multiplied using the
corresponding multiplies for L2 and L3 in the table above. For 128-byte testing the L3 multiplier is 1.6842.

Example Test Results

Example test results using the same Supermicro 5018A-FTN4 hardware configuration as the test units running VyOS
1.1 (a Linux-based network router and firewall distribution), and entry-level routers from Cisco and Ubiquiti.

Example 1: Supermicro 5018A-FTN4

Supermicro 5018A-FTN4 using 10G interfaces (unidirectional)
* Limited by test environment

Packet Len Throughput (Mbps)

128 1720.51 *

256 2849.88 *

512 6626.13

1024 9648.59

1500 9762.74

9000 9971.50

Supermicro 5018A-FTN4 using 1G interfaces (unidirectional)

Packet Len Throughput (Mbps)

128 757.72

256 872.46

512 933.81

1024 966.74

1500 981.26

9000 1002.4

Example 2: Cisco ISR 1921

Cisco 1921 with no services enabled, IP forwarding only

Packet Len Throughput (Mbps)

128 185.84

256 371.88

512 801.68

1024 968.39

1500 979.61

Example 3: Ubiquiti EdgeRouter Lite

Ubiquiti ERL with offload enabled

Packet Len Throughput (Mbps)

128 520.62

256 843.33

512 925.51

1024 965.12

1500 980.14

Comparison of Test Results to Commercial Specifications

As noted earlier, published performance numbers often provide the aggregate of RX and TX across all interfaces.
To be more accurate in this regard, we should also be calculating and adding the throughput generated by TCP
acknowledgment packets, but for most comparisons simply doubling the result to count both ingress and egress is
will provide in-kind results that can be used for comparison.

For “maximum” we will use a packet length of 9000, and for “typical” a packet length of 512. Using the 10G test
results from example 1, here are example results for basic forwarding and stateful packet inspection filtering:

Model Throughput Max Throughput Typical

Supermicro 5018A-FTN4 19.9 Gbps 13.2 Gbps

Cisco ASA model comparison (retrived from cisco.com 2016-11-14):

Model Throughput Max Throughput Typical

Cisco ASA 5525-X 2 Gbps 1 Gbps

Cisco ASA 5545-X 3 Gbps 1.5 Gbps

Cisco 5585-X with SSP10 4 Gbps 2 Gbps

Cisco 5585-X with SSP20 10 Gbps 5 Gbps

Cisco 5585-X with SSP40 20 Gbps 10 Gbps

Cisco 5585-X with SSP60 40 Gbps 20 Gbps

Here we can demonstrate that Linux on commodity hardware, can be competitive with high-end commercial
solutions in terms of basic throughput and filtering, and the 5018A-FTN4 is comparable to the 5585-X SSP40 in
performance (based on published information).

Appendix A: Client Test Script

#!/bin/bash

HOST="10.0.0.2"

SC="8"

TIME="30"

OMIT="3"

TMPFILE="/tmp/iperf3_results.txt"

case "$1" in

128)

 echo "Testing TCP using 128-byte IP packets (76-byte data, 142-byte Ethernet), $SC streams per CPU."

 TCPMSS="88"

 LEN="76"

 OVERHEAD_L3="1.6842"

 OVERHEAD_L2="1.8684"

 ;;

256)

 echo "Testing TCP using 256-byte IP packets (204-byte data, 270-byte Ethernet), $SC streams per CPU."

 TCPMSS="216"

 LEN="204"

 OVERHEAD_L3="1.2549"

 OVERHEAD_L2="1.3235"

 ;;

512)

 echo "Testing TCP using 512-byte IP packets (460-byte data, 526-byte Ethernet), $SC streams per CPU."

 TCPMSS="472"

 LEN="460"

 OVERHEAD_L3="1.1130"

 OVERHEAD_L2="1.1435"

 ;;

1024)

 echo "Testing TCP using 1024-byte IP packets (972-byte data, 1038-byte Ethernet), $SC streams per CPU."

 TCPMSS="984"

 LEN="972"

 OVERHEAD_L3="1.0535"

 OVERHEAD_L2="1.0679"

 ;;

1500)

 echo "Testing TCP using 1500-byte IP packets (1448-byte data, 1514-byte Ethernet), $SC streams per CPU."

 TCPMSS="1460"

 LEN="1448"

 OVERHEAD_L3="1.0359"

 OVERHEAD_L2="1.0456"

 ;;

9000)

 echo "Testing TCP using 9000-byte IP packets (8948-byte data, 9014-byte Ethernet), $SC streams per CPU."

 TCPMSS="8960"

 LEN="8948"

 OVERHEAD_L3="1.0058"

 OVERHEAD_L2="1.0074"

 ;;

*)

 echo "Usage $0 [128|256|512|1024|1500|9000]"

 exit 1

 ;;

esac

echo "" > $TMPFILE

echo "CPU 0 port 5201"

iperf3 -f m -c $HOST -p 5201 -t $(($TIME+$OMIT)) -i $(($TIME+$OMIT)) -l $LEN -M $TCPMSS -O $OMIT -A 0 -T 0 -P

$SC | grep SUM >> $TMPFILE &

echo "CPU 1 port 5202"

iperf3 -f m -c $HOST -p 5202 -t $(($TIME+$OMIT)) -i $(($TIME+$OMIT)) -l $LEN -M $TCPMSS -O $OMIT -A 1 -T 1 -P

$SC | grep SUM >> $TMPFILE &

echo "CPU 2 port 5203"

iperf3 -f m -c $HOST -p 5203 -t $(($TIME+$OMIT)) -i $(($TIME+$OMIT)) -l $LEN -M $TCPMSS -O $OMIT -A 2 -T 2 -P

$SC | grep SUM >> $TMPFILE &

echo "CPU 3 port 5204"

iperf3 -f m -c $HOST -p 5204 -t $(($TIME+$OMIT)) -i $(($TIME+$OMIT)) -l $LEN -M $TCPMSS -O $OMIT -A 3 -T 3 -P

$SC | grep SUM >> $TMPFILE &

echo "CPU 4 port 5205"

iperf3 -f m -c $HOST -p 5205 -t $(($TIME+$OMIT)) -i $(($TIME+$OMIT)) -l $LEN -M $TCPMSS -O $OMIT -A 4 -T 4 -P

$SC | grep SUM >> $TMPFILE &

echo "CPU 5 port 5206"

iperf3 -f m -c $HOST -p 5206 -t $(($TIME+$OMIT)) -i $(($TIME+$OMIT)) -l $LEN -M $TCPMSS -O $OMIT -A 5 -T 5 -P

$SC | grep SUM >> $TMPFILE &

echo "CPU 6 port 5207"

iperf3 -f m -c $HOST -p 5207 -t $(($TIME+$OMIT)) -i $(($TIME+$OMIT)) -l $LEN -M $TCPMSS -O $OMIT -A 6 -T 6 -P

$SC | grep SUM >> $TMPFILE &

echo "CPU 7 port 5208"

iperf3 -f m -c $HOST -p 5208 -t $(($TIME+$OMIT)) -i $(($TIME+$OMIT)) -l $LEN -M $TCPMSS -O $OMIT -A 7 -T 7 -P

$SC | grep SUM >> $TMPFILE

echo "Done"

sleep 1

TOTAL_DATA=$(cat $TMPFILE | grep receiver | gawk '{print $7}' | paste -s -d + - | bc)

TOTAL_L3=$(echo "$TOTAL_DATA*$OVERHEAD_L3" | bc)

TOTAL_L2=$(echo "$TOTAL_DATA*$OVERHEAD_L2" | bc)

echo "Total: $TOTAL_L3 Mbps IP traffic ($TOTAL_DATA data, $TOTAL_L2 Ethernet)"

Appendix B: Server Test Script

#!/bin/bash

case "$1" in

start)

 echo "Starting iperf3:"

 echo "CPU 0 port 5201"

 iperf3 -p 5201 -s -D -A 0

 echo "CPU 1 port 5202"

 iperf3 -p 5202 -s -D -A 1

 echo "CPU 2 port 5203"

 iperf3 -p 5203 -s -D -A 2

 echo "CPU 3 port 5204"

 iperf3 -p 5204 -s -D -A 3

 echo "CPU 4 port 5205"

 iperf3 -p 5205 -s -D -A 4

 echo "CPU 5 port 5206"

 iperf3 -p 5206 -s -D -A 5

 echo "CPU 6 port 5207"

 iperf3 -p 5207 -s -D -A 6

 echo "CPU 7 port 5208"

 iperf3 -p 5208 -s -D -A 7

 echo "Done"

 ;;

stop)

 echo "Stopping iperf3:"

 killall -9 iperf3

 echo "Done"

 ;;

*)

 echo "Usage: $0 [start|stop]"

 exit 1

 ;;

esac

